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1. ASYMPTOTIC EQUIVALENCE OF GENMETA ESTIMATOR AND SIMPLE
META-ANALYSIS ESTIMATOR WHEN ALL THE REDUCED MODELS ARE THE SAME

TO THE MAXIMAL MODEL

When all the reduced models are the same to the maximal model, it follows θ∗k = β∗, 20

XAk = X and gk = f for k = 1, 2, . . . ,K. Then, for each k, uk(X;β∗, θ∗k) = uk(X;β∗, β∗) =∫
sk(y | XAk ;β∗)f(y | X;β∗)dy = 0. By the definition of ∆, we have ∆ = 0. On the other

hand, assumingEY |X{∇θksk(θ∗k)} = ∇θkEY |X{sk(θ∗k)}with sk(θ∗k) = sk(Y | XAk ; θ∗k), it fol-
lows Λk = (1/ck)I(θ∗k), where I(θ∗k) is the Fisher’s information matrix of gk or f . Then, the
optimal C is 25

Copt = Λ−1 = diag(c1Σ, . . . , cKΣ),

where Σ = I(θ∗k)
−1. Denote as Ĉopt a consistent estimator of Copt. Then, the GENMETA esti-

mator with Ĉopt is

β̂opt = argminβU
T
n (β, θ̂)ĈoptUn(β, θ̂).

Under regularity conditions similar to those in Theorem 1, β̂opt → β∗ in probability. By Mean
Value Theorem,

Un(β̂opt, θ̂) = Un(β∗, θ̂) +Gn(β̄, θ̂)(β̂opt − β∗), (1)
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where β̄ is the mean value andGn(β̄, θ̂) = ∂Un(β, θ̂)/∂β |β=β̄ . By the first order condition, β̂opt30

satisfies GTn (β̂opt, θ̂)ĈoptUn(β̂opt, θ̂) = 0. Left-multiplying (1) by GTn (β̂opt, θ̂)Ĉopt, it follows

β̂opt − β∗ = −{GTn (β̂opt, θ̂)ĈoptGn(β̄, θ̂)}−1{GTn (β̂opt, θ̂)ĈoptUn(β∗, θ̂)} (2)

Also,

Gn(β̂opt, θ̂) =
∂

∂β
Un(β, θ̂) |β=β̂opt

=


∂
∂βu1(β, θ̂1) |β=β̂opt

...
∂
∂βuK(β, θ̂K) |β=β̂opt

 .

Under regularity conditions similar to those in Theorem 1, ∂uk(β, θ̂k)/∂β |β=β̂opt
= Σ−1 + op(1)

for each k. Then,

Gn(β̂opt, θ̂) =

Σ−1

...
Σ−1

+ op(1). (3)

Similarly,35

Gn(β̄, θ̂) =

Σ−1

...
Σ−1

+ op(1). (4)

On the other hand, under regularity conditions similar to those in Theorem 1, uk(β∗, θ̂k) =

−Σ−1(θ̂k − β)∗ + op(1/n
1/2). Then,

Un(β∗, θ̂) = −

Σ−1(θ̂1 − β∗)
...

Σ−1(θ̂K − β∗)

+ op(1/n
1/2). (5)

Hence, by (2), (3), (4), (5) and Slutsky’s theorem,

β̂opt − β∗ =
( K∑
k=1

ck

)−1{ K∑
k=1

ck(θ̂k − β∗)
}

+ op(1/n
1/2). (6)

On the other hand,

β̂meta − β∗ =
{ K∑
k=1

( Σ̂k

nk

)−1}−1{ K∑
k=1

( Σ̂k

nk

)−1
θ̂k

}
− β∗40

=
( K∑
k=1

ck

)−1{ K∑
k=1

ck(θ̂k − β∗)
}

+ op(1/n
1/2). (7)

Therefore, by (6) and (7), β̂opt = β̂meta + op(1/n
1/2).
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2. NEWTON-RAPHSON’S METHOD AND ITERATIVELY REWEIGHTED LEAST SQUARES
ALGORITHM

In this section we provide a derivation of the Newton-Raphson’s method for GENMETA with
generalized linear models. As in Section 2.3, we assume that the maximal and reduced models
belong to the class of GLM (McCullagh & Nelder, 1989). Specifically, assume the densities of
Y | X and Y | XAk are of the forms

f(y | x;β, φ) = exp({1/a(φ)}(yh(xTβ)− b{h(xTβ)}) + c(y;φ)),

and

gk(y | xAk ; θk) = exp({1/a(φk)}(yh(xTAkθk)− b{h(xTAkθk)}) + c(y;φk)),

respectively, where a(·), b(·) and c(·) are known functions, h(·) = b′−1(g−1(·)), g is a monotone 45

and differentiable link function, and φ and φk are the dispersion parameters of the maximal and
the kth reduced models, respectively. Recall that we assume the maximal and the reduced models
have the same link function g. However, both the GENMETA and the Newton-Raphson’s method
are flexible to allow the maximal and the reduced models to have different link functions. We also
assumeX = ∪Kk=1XAk , where the vectors of the covariates are viewed as sets without confusion. 50

Denote the dimensions of θk and β as dk and p, respectively. Assume d =
∑K

k=1 dk ≥ p since
the parameters of the maximal model will not be identifiable if d < p.

2.1. Case I : φ and φk’s are known.
The log-likelihood of gk is

lk(y | xAk ; θk) = {1/a(φk)}(yh(xTAkθk)− b{h(xTAkθk)}) + c(y;φk).

Then, the score function is 55

sk(y | xAk ; θk) = {1/a(φk)}{y − g−1(xTAkθk)}h
′(xTAkθk)xAk .

Then,

uk(x;β, θk) = EY |Xsk{(y | xAk ; θk)} = {1/a(φk)}{g−1(xTβ)− g−1(xTAkθk)}h
′(xTAkθk)xAk .

Thus, the vector of empirical moment functions for β is

Un(β) = Pn


uk(X;β, θ̂k)

uk(X;β, θ̂k)
...

uk(X;β, θ̂k)

 ,

where Pn is the empirical measure with respect to the reference sample.
Let Qn(β) = UTn (β)CUn(β) where C is a d× d positive definite matrix. The goal is to find

the minimizer of Qn(β). Its equivalent to solving the equation 60

Dn(β) = 0,

where Dn(β) = GTn (β)CUn(β) and Gn(β) = ∂Un(β)/∂β is a d× p matrix. Then, the tth iter-
ation step for the Newton-Raphson’s method is

β(t+1) = β(t) − Jn(β(t))−1Dn(β(t)), (8)

where Jn(β) = ∂Dn(β)/∂β is a p× p matrix.
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Next, we write Dn(β) in a matrix form. The matrix form of Gn(β) is65

Gn(β) = Pn

 [a(φ1)g′{g−1(XTβ)}]−1h′(XT
A1
θ̂1)XA1X

T

...
[a(φK)g′{g−1(XTβ)}]−1h′(XT

AK
θ̂K)XAKX

T

 = (1/n)XT
Adiag

WXrbind,

where Xrbind = 1⊗X and X(n×p) is the reference data matrix; XAdiag = diag(XA1 , . . . , XAK )
and XAk(n×dk) is the reference data matrix for the kth study; W = diag(W1, . . . ,WK),
Wk = diag(wk1, . . . , wkn), wki = [a(φk)g

′{g−1(XT
i β)}]−1h′(XT

Ak,i
θ̂k) for k = 1, . . . ,K, i =

1, . . . , n and i, andXT
i andXT

Ak,i
are the ith rows ofX andXAk , respectively. Similarly, the ma-

trix form of Un(β) is Un(β) = (1/n)XT
Adiag

r, where r = (r1, . . . , rK)T , rk = (rk1, . . . , rkn)T70

and rki = {1/a(φk)}{g−1(XT
i β)− g−1(XT

Ak,i
θ̂Ak,i)}h′(XT

Ak,i
θ̂Ak,i) for each k and i. Thus, the

matrix form of Dn(β) is

Dn(β) = (1/n2)XT
rbindWXAdiagCX

T
Adiag

r. (9)

Next, we write Jn(β) in a matrix form. Let Gn(β) be partitioned by columns as Gn(β) =
(Gn,1(β), . . . , Gn,p(β)), where Gn,j(β) is a d× 1 column vector for j = 1, . . . , p. Then,

Jn(β) =
∂

∂β
Dn(β) =

∂

∂β
GTn (β)CUn(β)

=


∂
∂βG

T
n,1(β)CUn(β)

...
∂
∂βG

T
n,p(β)CUn(β)

 = GTn (β)CGn(β) +

U
T
n (β)C ∂

∂βGn,1(β)
...

UTn (β)C ∂
∂βGn,p(β)

 .

(10)

Then, the matrix form of the first summand is (1/n2)XT
rbindWXAdiagCX

T
Adiag

WXrbind. The75

jth row of the second summand is rTXAdiagC∂Gn,j(β)/∂β. Note that

∂

∂β
Gn,j(β) = (1/n)XT

Adiag
LX∗jdiagXrbind,

where L = diag(L1, . . . , LK), Lk = diag(lk1, . . . , lkn) and, for each k and i,

lki = −g′′{g−1(XT
i β)}/(a(φk)[g

′{g−1(XT
i β)}]3h′(XT

Ak,i
θ̂k));

X∗jdiag = diag(Xjdiag , . . . , Xjdiag) withK diagonal blocks andXjdiag = diag(X1j , . . . , Xnj) for
j = 1, . . . , p. Then, for each j, the matrix form of UTn (β)C∂Gn,j(β)/∂β is

(1/n2)rTXAdiagCX
T
Adiag

LX∗jdiagXrbind.

Then, the second summand of (10) can be rewritten as (1/n2)XT
rbindV Xrbind, where V =

diag(v1, . . . , vnK) and vi is the ith element of the row vector rTXAdiagCX
T
Adiag

L. Thus,

Jn(β) = (1/n2)XT
rbind(WXAdiagCX

T
Adiag

W + V )Xrbind = (1/n2)XT
rbindW

∗Xrbind. (11)

where W ∗ = WXAdiagCX
T
Adiag

W + V .
80

Therefore, plugging (9) and (11) in (8), we get the following tth iteration step

β(t+1) = β(t) − (XT
rbindW

∗Xrbind)−1XT
rbindWXAdiagCX

T
Adiag

r,

which can be seen as the tth step of an iteratively reweighted least squares algorithm.
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2.2. Case II : φ and φk’s are unknown.
When φ and φk’s are unknown, we propose to first obtain the GENMETA estimator β̂ of β?

as above with φ′ks replaced by φ̂k’s. Next, let us consider the estimation of φ?, the true value of 85

φ. For the kth reduced model, we have an additional score function with respect to φk, which is

sk(y | xAk ; θk, φk) = − a
′(φk)

a2(φk)
(yh(xTAkθk)− b{h(xTAkθk)}) + c′(y;φk),

where c′(y;φk) is the derivative of c(y;φk) with respect to φk. Then, we obtain

uk(X;β, φ, θk, φk) = − a
′(φk)

a2(φk)
(g−1(XTβ)h(XT

Ak
θk)− b{h(XT

Ak
θk)}) + qk(X;β, φ, φk),

where qk = EY |X(c′(Y, φk)). The distribution of Y | X depends on β and φ so that qk also
depends on them. Then, the empirical moment vector for φ is

Un(φ) = Pn(u1(X; β̂, φ, θ̂1, φ̂1)T , . . . , uK(X; β̂, φ, θ̂K , φ̂K)T )T .

We propose to estimate φ? in the GMM framework. Thus, we need to compute the minimizer
of Un(φ)TCUn(φ), where C is a known weighting matrix. As before, we use the Newton-
Raphson’s method and it can be written as 90

φ(t+1) = φ(t) − J−1
n (φ(t))Dn(φ(t)), (12)

where

Jn(φ) = UTn (φ)C
d2

dφ2
qn(φ) + (

d

dφ
qn(φ))TC

d

dφ
qn(φ),

Dn(φ) = UTn (φ(t))Cdqn(φ)/dφ and qn(φ) = Pn(q1(X; β̂, φ, φ̂1), . . . , qK(X; β̂, φ, φ̂K))T .

Thus, when φ and φk’s are unknown, we first choose initial estimates β(0) and φ(0). Then,
we get the GENMETA estimator β̂ by using equation (8) until a stopping rule is reached.
Subsequently, φ(0), β̂ and the study estimates are plugged in equation (12) and the process 95

is repeated until a stopping rule is reached to get the GENMETA estimator of φ∗. In each
Newton-Raphson’s step, the weighting matrix C is estimated by the estimates from the previous
step.

If the estimates of the study dispersion parameters, φk’s, are not provided directly, but the 100

the outcomes are standardized (var(Y ) = 1), we can obtain them through the following relation
based on conditional variance formula

a(φ̂k) =
1− (Png

−1(XT
Ak
θ̂k)

2 − {Png−1(XT
Ak
θ̂k)}2)

Pnb′′{h(XT
Ak
θ̂k)}

,

where h(·) = b′−1(g−1(·)) and Pn is the empirical measure with the reference data. For normal
family where the canonical link is an identity function, we have b′′(ψ) = 1, which implies the
denominator is 1. 105

3. FULL PROOF OF THEOREM 1 AND CHECKING REGULARITY ASSUMPTIONS IN TWO
EXAMPLES

We first provide a complete proof of Theorem 1 and then check the assumptions for logistic
and linear regression models.
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Proof of Theorem 1. First, we show the consistency of β̂. Denote θ̂ and θ∗ as stacked110

vectors of θ̂k’s and θ∗k’s, respectively. Denote U0(β, θ) = E(U(X;β, θ)) and Q0(β) =
U0(β, θ∗)TCU0(β, θ∗).

By (A1) and Lemma 2.3 of Newey & McFadden (1994), Q0(β) is uniquely minimized at β∗.
By (A2), (A3), (A4) and Lemma 2.4 of Newey & McFadden (1994), U0(β, θ) is continu-

ous and Un(β, θ) converges uniformly to U0(β, θ) for (β, θ) ∈ Dβ ×Nc(θ
∗), where Nc(θ

∗) is a
compact subset of N(θ∗) including θ∗. Note that θ̂ is a consistent estimator of θ∗. With proba-
bility going to one (wpg1),

sup
β∈Dβ

||Un(β, θ̂)− U0(β, θ̂)|| ≤ sup
(β,θ)∈Dβ×Nc(θ∗)

||Un(β, θ)− U0(β, θ)||.

Then, Un(β, θ̂)− U0(β, θ̂) converges uniformly in probability to 0 for β ∈ Dβ .
For any r > 0, wpg1,

sup
β∈Dβ

||U0(β, θ̂)− U0(β, θ∗)|| ≤ sup
β∈Dβ

E( sup
||θ−θ∗||<r

||U(β, θ)− U(β, θ∗)||).

By (A3), (A4) and dominant convergence theorem, E(sup||θ−θ∗||<r ||U(β, θ)− U(β, θ∗)||)115

converges to 0 for every β ∈ Dβ as r decreases to 0. Note that E(sup||θ−θ∗||<r ||U(β, θ)−
U(β, θ∗)||) decreases as r decreases for each β. By (A2) and Dini’s theorem (see, for example,
Theorem 7.13 of Rudin (1976)), E(sup||θ−θ∗||<r ||U(β, θ)− U(β, θ∗)||) converges uniformly in
probability to 0 for β ∈ Dβ as r decreases to 0. Then, U0(β, θ̂)− U0(β, θ∗) converges uniformly
in probability to 0 for β ∈ Dβ .120

By combining the above two results, it follows that Un(β, θ̂) converges uniformly in probabil-
ity to U0(β, θ∗) for β ∈ Dβ .

By the triangle and Cauchy-Schwartz inequalities,

sup
β∈Dβ

|Qn(β)−Q0(β)| ≤ ||Ĉ|| sup
β∈Dβ

||Un(β, θ̂)− U0(β, θ∗)||2

+ 2||Ĉ|| sup
β∈Dβ

||U0(β, θ∗)|| sup
β∈Dβ

||Un(β, θ̂)− U0(β, θ∗)||125

+ ||Ĉ − C|| sup
β∈Dβ

||U0(β, θ∗)||2

Since Ĉ is a consistent estimator of C, ||Ĉ|| converges in probability to ||C||, which is finite;
||Ĉ − C|| converges in probability to 0. Since U0(β, θ∗) is continuous for β ∈ Dβ and Dβ is
compact, supβ∈Dβ ||U0(β, θ∗)||2 is finite. Since supβ∈Dβ ||Un(β, θ̂)− U0(β, θ∗)|| converges

in probability to 0, supβ∈Dβ ||Un(β, θ̂)− U0(β, θ∗)||2 converges in probability to 0. Thus,130

Qn(β)−Q0(β) converges uniformly in probability to 0 for β ∈ Dβ . Recall that β∗ is the
unique minimizer of Q0(β). By Theorem 2.1 of Newey & McFadden (1994), β̂ is a consistent
estimator of β∗.

Next, we derive the asymptotic distribution of the GENMETA estimator β̂. Note that β̂ is a
solution to

Gn(β, θ̂)T ĈUn(β, θ̂) = 0,
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where Gn(β, θ̂) = ∂Un(β, θ̂)/∂β, the Jacobian of Un(β, θ̂). On the other hand, by mean value
theorem,

Un(β̂, θ̂) = Un(β∗, θ̂) +Gn(β̄, θ̂)(β̂ − β∗),

where β̄ denotes a matrix each column of which corresponds to each element of Un(β, θ̂). After
left multiplying Gn(β̂, θ̂)T Ĉ to the above identity, it follows

n1/2(β̂ − β∗) = −Mnn
1/2Un(β∗, θ̂),

where Mn = (Gn(β̂, θ̂)T ĈGn(β̄, θ̂))−1Gn(β̂, θ̂)T Ĉ. 135

Consider Mn. Since β̂ is a consistent estimator of β∗, each column of β̄ is a consistent estima-
tor of β∗. On the other hand, θ̂ is a consistent estimator of θ∗. By (A5), (A6) and Lemma 2.4 of
Newey & McFadden (1994), Gn(β, θ) converge uniformly to continuous E{∂U(X;β, θ)/∂β}
for (β, θ) ∈ Dβ ×Nc(θ

∗), where Nc(θ
∗) is a compact subset of N(θ∗), including θ∗. Since β̂

and each column of β̄ converge in probability to β∗ and θ̂ is a consistent estimator of θ∗, by, for 140

example, Theorem 9.4 of Keener (2010), bothGn(β̂, θ̂) andGn(β̄, θ̂) converges in probability to
Γ = E{∂U(X;β∗, θ∗)/∂β}. Thus, by noting Ĉ→C in probability, Mn converges in probability
to (ΓTCΓ)−1ΓTC.

Consider n1/2Un(β∗, θ̂). By mean value theorem,

Un(β∗, θ̂) = Un(β∗, θ∗) + Vn(β∗, θ̄)(θ̂ − θ∗),

where Vn is the Jacobian of Un(β∗, θ) as a function of θ and θ̄ is a matrix each column of which
corresponds to each element of Un(β∗, θ). Thus,

n1/2Un(β∗, θ̂) = n1/2Un(β∗, θ∗) + Vn(β∗, θ̄)n1/2(θ̂ − θ∗).

By (A9) and central limit theorem, n1/2Un(β∗, θ∗)
d→ N(0,∆). Since θ̂ is a consistent estimator

of θ∗. each column of θ̄ converges in probability to θ∗. Similar to the above argument, by (A7),
(A8), Lemma 2.4 of Newey & McFadden (1994) and Theorem 9.4 of Keener (2010),

Vn(β∗, θ̄)→diag(W1,W2, . . . ,WK) in probability,

where, for k = 1, 2, . . . ,K,Wk = E{∂uk(X,β∗, θk)/∂θk} |θk=θ∗
k
. TheK study data sets are in-

dependent. So are θ̂k’s. Note that nk/n→ ck, where ck is a positive constant for k = 1, 2, . . . ,K.
Then n1/2(θ̂ − θ∗) converges in distribution to

N(0, diag((1/c1)Σ1, (1/c2)Σ2, . . . , (1/cK)ΣK)).

Since the K data sets and the reference data are independent, the above results imply that
n1/2Un(β∗, θ̂) converges in distribution to N(0,∆ + Λ), where Λ is a block diagonal matrix 145

whose kth block is (1/ck)WkΣkW
T
k for k = 1, . . . ,K.

Therefore, with the above two results onMn and n1/2Un(β∗, θ̂) and by Slutsky’s theorem, the
asymptotic normality of n1/2(β̂ − β∗) follows. �

Example 1 (Check Assumptions for Logistic Regression Model). Suppose the maximal model
is

Y | X ∼ Bernoulli
{ 1

1 + exp(−XTβ∗)

}
,
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where X = (1, XT )T , X = (X1, . . . , Xd)
T is the vector of covariates and β∗ =

(β∗0 , β
∗
1 , . . . , β

∗
p)T is the vector of coefficients of interest. There are K independent stud-

ies and the reduced model of the kth study is

Y | XAk ∼ Bernoulli
{ 1

1 + exp(−XT
Ak
θk)

}
,

whereXAk = (1, XT
Ak

)T ,XAk is a sub-vector ofX withA ⊂ {1, 2, . . . , p}. For example,XA =

(X1, X2)T when A = {1, 2}.150

The global identification assumption (A1) usually holds and Dβ is a compact set. Next, we
check the assumptions (A3) to (A9). The moment functions from the kth study is

uk(X;β, θk) =
( 1

1 + e−XT β
− 1

1 + e
−XT

Ak
θk

)
XAk .

It is a continuous function of β and θk. Then, (A3) is satisfied. Note that

sup
(β,θ)∈Dβ×N(θ∗)

||
( 1

1 + e−XT β
− 1

1 + e
−XT

Ak
θk

)
XAk || ≤ 2||X||1,

where || · || and || · ||1 are the l2 and l1 norms, respectively. Then, given E(|Xi|) <∞ for each
i, (A4) is satisfied. Also,

∂

∂β
uk(X;β, θk) =

e−X
T β

(1 + e−XT β)2
XAkX

T , (13)

which does not depend on θk and is continuous for each β. Then, (A5) is verified. Note that

sup
(β,θ)∈Dβ×N(θ∗)

|| e−X
T β

(1 + e−XT β)2
XAkX

T || ≤ ||XXT ||1.

Given E(X2
i ) <∞ for each i, (A6) is satisfied. Note that

∂

∂θk
uk(X;β∗, θk) = − e

−XT
Ak
θk

(1 + e
−XT

Ak
θk)2

XAkX
T
Ak
,

which is continuous for each θk. Then, (A7) is satisfied. Note that

sup
(β,θ)∈Dβ×N(θ∗)

|| − e
−XT

Ak
θk

(1 + e
−XT

Ak
θk)2

XAkX
T
Ak
|| ≤ ||XXT ||1.

GivenE(X2
i ) <∞ for each i, (A8) is satisfied. The absolute value of each element of ∆(β∗, θ∗)

is less than 1, E(|Xi|) or E(|XiXj |) for each i and j. Given E(X2
i ) <∞, ∆(β∗, θ∗) is finite.

Note that Γ(β∗, θ∗k) is a stacked matrix of (13) for k = 1, . . . ,K. Given each covariate of the155

maximal model is in at least one reduced model and E[{e−XT β/(1 + e−X
T β)2}XXT ] is posi-

tive definite, Γ(β∗, θ∗) is of full rank. Then, (A9) is verified.

Example 2 (Check Assumptions for Linear Regression Model). Suppose the true maximal
model is

Y | X ∼ N(XTβ∗, σ∗2),

where X = (X1, X2, . . . , Xp)
T ; β∗ = (β∗1 , β

∗
2 , . . . , β

∗
p)T ; E(X) = 0 and E(Y ) = 0, that is,

both X and Y are centered. There are K independent studies and the reduced model of the
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kth study is

Y | XAk ∼ N(XT
Ak
θk, σ

2
k).

For simplicity, assume σ∗2 is known and the unknown parameter is β∗. The case with unknown
σ∗2 can be similarly considered.

The moment functions from the kth reduced model is

uk(X;β; θk, σ
2
k) =

1

σ2
k

(XAkX
Tβ −XAkX

T
Ak
θk),

which is linear in β. Note that 160

∂

∂β
uk(X;β; θk, σ

2
k) =

1

σ2
k

XAkX
T . (14)

Given each covariate of the maximal model is in at least one reduced model and E(XXT ) is
positive definite, Γ(β∗, {θ∗k}, {σ∗2k }) = ∂uk(X;β∗; {θ∗k}, {σ∗2k })/∂β is of full rank. Given C is
positive definite, (A1) is satisfied. Suppose Dβ is a compact set. Then, (A2) is satisfied.

Next, we check the assumptions (A3) to (A9). Note that uk(X;β; θk, σ
2
k) is continuous for

every (β, θk, σ
2
k). Then, (A3) is satisfied. Note that

sup
(β,θk,σ

2
k
)

|| 1

σ2
k

(XAkX
Tβ −XAkX

T
Ak
θk)|| ≤

1

σ2
k

(||β||+ ||θk||)||XXT ||1,

Denote a finite upper bound of ||β|| for β ∈ Dβ as C(β), a finite upper bound of ||θk|| for θk ∈
N(θ∗k) asC(θk), and a positive finite lower bound of σ2

k for σ2
k ∈ N(θ∗k) as σ2

L. The supremum of
(1/σ2

k)(||β||+ ||θk||) for (β, θk, σ
2
k) ∈ Dβ ×N(θ∗k)×N(σ∗2k ) is bounded by (1/σ2

L)(C(β) +
C(θk)). Given E(X2

i ) <∞ for each i, (A4) is satisfied. Note that ∂uk(X;β; θk, σ
2
k)/∂β does

not depend on β and θk and is continuous for each σ2
k. Then, (A5) is satisfied. Note that

sup
σ2
k
∈N(σ∗2

k
)

|| 1

σ2
k

XAkX
T || ≤ 1

σ2
L

||XXT ||1.

Given E(X2
i ) <∞ for each i, (A6) is satisfied. Note that

∂

∂(θk, σ
2
k)
uk(X;β; θk, σ

2
k) = {− 1

σ2
k

XAkX
T
Ak
,− 1

σ4
k

(XAkX
Tβ −XAkX

T
Ak
θk)},

which is continuous for every (β, θk, σ
2
k). Then, (A7) is satisfied. For every (β, θk, σ

2
k) ∈ Dβ ×

N(θ∗k, N(σ∗2k )), the l2 norm of the above partial derivative is less than or equal to

1

σ2
L

+
1

σ4
L

(C(β) + C(θk))||XXT ||1.

Given E(X2
i ) <∞ for each i, (A8) is satisfied. Each element of ∆(β∗, {θ∗k}, {σ∗2k }) is equal to

a constant times E(Xi1Xi2Xi3Xi4) for some i1, i2, i3, i4. Given E(X4
i ) <∞ for each i, ∆ is 165

finite. Note that Γ(β∗, {θ∗k}, {σ∗2k }) is a stacked matrix of (14) for k = 1, . . . ,K. As in checking
(A2), given each covariate of the maximal model is in at least one reduced model and E(XXT )
is positive definite, Γ is of full rank. Then, (A9) is verified.
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4. SIMULATION RESULTS FOR LOG-NORMALLY DISTRIBUTED COVARIATES

Table 1: Robustness of GENMETA Estimation (Log-normally Distributed Covariates)

Setting Study-I Study-II Study-III Reference β∗
i Bias SD (ESD) RMSE CR AL

µb µb µb µb β∗
1 .010 .076 (.075) .077 .941 .288

I σ2
b σ2

b σ2
b σ2

b β∗
2 .011 .064 (.061) .065 .947 .237

ρb ρb ρb ρb β∗
3 .006 .066 (.064) .066 .954 .246

µb µh µm µb β∗
1 .010 .079 (.072) .079 .930 .272

σ2
b σ2

b σ2
b σ2

b β∗
2 .002 .056 (.054) .056 .948 .211

ρb ρb ρb ρb β∗
3 -.002 .062 (.058) .062 .945 .222

µb µb µb µb β∗
1 .032 .088 (.088) .094 .930 .339

II σ2
b σ2

h σ2
l σ2

b β∗
2 -.002 .062 (.057) .062 .941 .221

ρb ρb ρb ρb β∗
3 -.005 .074 (.074) .074 .967 .286

µb µh µm µb β∗
1 .021 .079 (.077) .081 .929 .294

σ2
b σ2

h σ2
l σ2

b β∗
2 .0005 .055 (.055) .055 .956 .213

ρb ρb ρb ρb β∗
3 -.008 .065 (.064) .065 .954 .246

µb µb µb µb β∗
1 -.062 .107 (.118) .124 .934 .382

σ2
b σ2

b σ2
b σ2

b β∗
2 .021 .070 (.065) .073 .930 .250

ρb ρb ρb ρh β∗
3 .030 .087 (.096) .092 .956 .322

µb µb µb µb β∗
1 .039 .072 (.069) .081 .891 .264

σ2
b σ2

b σ2
b σ2

b β∗
2 .023 .065 (.062) .069 .932 .240

ρb ρb ρb ρl β∗
3 .018 .061 (.058) .064 .930 .224

µb µb µb µb β∗
1 .053 .079 (.075) .095 .866 .290

III σ2
b σ2

b σ2
b σ2

b β∗
2 .019 .065 (.063) .067 .942 .242

ρl ρb ρh ρl β∗
3 .012 .068 (.064) .069 .935 .249

µb µb µb µb β∗
1 .032 .089 (.084) .095 .912 .322

σ2
b σ2

b σ2
b σ2

b β∗
2 .010 .062 (.062) .063 .946 .240

ρl ρb ρh ρb β∗
3 -.009 .073 (.071) .073 .942 .273

µb µb µb µb β∗
1 -.025 .113 (.108) .116 .954 .407

σ2
b σ2

b σ2
b σ2

b β∗
2 .017 .065 (.064) .067 .951 .248

ρl ρb ρh ρh β∗
3 -.002 .091 (.091) .091 .965 .347

µb µb β∗
1 .007 .096 (.104) .096 .968 .365

IV X1 > −0.5, X2 > 0 σ2
b σ2

b β∗
2 .242 .353 (.117) .428 .572 .401

X2 < 0.5 ρb ρb β∗
3 -.015 .067 (.081) .068 .971 .283

Biases, standard deviation (SD), estimated standard deviation (ESD), square roots of mean square errors (RMSE),
coverage rates (CR), and average lengths (AL) of 95% confidence intervals of the GENMETA estimates using the
study covariance estimators in the setting of logistic regression. In setting (I), data are simulated in ideal setting where
the covariate distribution is a log-normal distribution with the natural logarithm of the covariates being characterized
by mean, sd and correlation of normal variates and are assumed to same across all populations. In setting (II)-(IV),
the assumption is violated by creating variations in mean/sd, correlations of the underlying normal distribution and
selection criterion across the studies and reference sample. The vector of means, variances and correlations of the
underlying normal covariates are denoted by µ∗ = (µ1, µ2, µ3), σ2

∗ = (σ2
1 , σ

2
2 , σ

2
3) and ρ∗ = (ρ12, ρ23, ρ13) for ∗ ∈

{b, l,m, h}, where µb = (0, 0, 0), µm = (0.5, 0.5, 0.5), µh = (1, 1, 1); σ2
b = (1, 1, 1), σ2

l = (0.5, 0.5, 0.5), σ2
h =

(2, 2, 2) and ρb = (0.3, 0.6, 0.1), ρh = (0.4, 0.8, 0.2), ρl = (0.2, 0.4, 0). Estimated standard deviation are obtained
by the asymptotic formula (2) in the main paper and used to construct 95% confidence interval.
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